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Fluid--structure interactions of a torsion spring
pendulum at large initial amplitudes

By H. D Ü T S C H, F. D U R S T AND A. M E L L I N G
Institute of Fluid Mechanics, University of Erlangen–Nuremberg,
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(Received 3 July 1999 and in revised form 20 May 2002)

The motion of a lamina of high aspect ratio suspended in a Newtonian fluid was stud-
ied experimentally and numerically. The damped oscillations for one rotational degree
of freedom showed strong nonlinear fluid–structure interactions, mainly caused by
the vortex structures forming at the lamina tips. The numerical results were obtained
by a fully implicit Navier–Stokes solver, using partitioned coupling of the equations
of motion of the fluid and suspended structure. Computations were carried out for
different grid levels and time steps, providing information on the accuracy of the nu-
merical results. For the fluid domain, a Langrangian–Eulerian finite-volume method
was applied in order to solve the two-dimensional Navier–Stokes equation on grids
moving with the oscillating lamina. The elastic motion of the lamina was computed
as that of a torsion spring pendulum. The computed time traces of the angular pos-
ition are in close agreement with corresponding experimental results. An equivalent
empirical model which accounted for the fluid moments by empirical coefficients was
much less successful in predicting the experimentally observed behaviour.

1. Introduction
Great advances in computational methods for the fluid and structure mechanics

domains have been achieved in recent decades. Hence, the prediction of coupled
mechanical phenomena, for large amplitudes in particular, is attracting increased
interest in research and applications. The partitioned modular coupling of different
solution methods has proved to be the most appropriate approach to obtain best
results in each domain. To provide solutions for nonlinear multi-physical problems,
efficient and robust coupling strategies have to be developed and investigated. This
need motivated us to design a strongly coupled time-dependent configuration in order
to investigate and to validate the computational predictions of dynamic interactions
between fluids and structures at large displacements. For this purpose, the fluid-
damped oscillation of a lamina was chosen. This involves the coupling between
a torsion spring pendulum and a continuous viscous fluid flow, see figure 1, and
has similarities to a check valve configuration as found in various civil engineering
applications, see e.g. Horsten, van Steenhoven & van Campen (1990), Kerh & Wellford
(1997). Designed as a single-degree-of-freedom oscillator it enabled very accurate
modelling of the structural moments even at large amplitudes. Additionally, the
high aspect ratio of the structure provided a two-dimensional flow pattern over a
flow field large with respect to the lamina itself. As there was no mean cross-flow
present in this configuration the structure interacted strongly with the self-induced
fluid flow. Experiments were performed to determine the damping behaviour in air
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Figure 1. Fluid-damped torsion spring pendulum.

and water for initial excursions of 10◦, 45◦ and −90◦. Stationary measurements of
the elastic properties of the torsion spring provided input data for the computational
approach. Then the complementary numerical simulations allowed new insights into
the coupled fluid and structure physics, i.e. the strong structure–vortex and vortex–
vortex interaction phenomena.

The present paper describes experimental and numerical studies of the fluid–
structure interaction and the results obtained. The main features of the test rig for the
experimental investigations are described in § 2. In § 3 the mathematical treatment of
the fluid–structure interaction is outlined for both the fluid and structure domains. The
numerical method used to solve the resultant set of equations is briefly discussed and
an alternative empirical model is also introduced. The experimental and numerical
results are compared and discussed in § 4. Important conclusions of the work with
respect to the characteristics of the flow field, the interaction with the motion of the
structure and the suitability of the modelling adopted are presented in § 5.

The authors would be pleased to provide the experimental data for the purpose of
validation and for bench marking on request.

2. Test-rig design and experimental set-up
The main objective of the experiment design was a two-dimensional rotational flow

induced by the large-scale motion of a stiff structure. The design had to ensure that
moments related to the structure domain could be determined very accurately in order
to reduce error sources for the comparisons with the computations; an aspect ratio
of 20 was, therefore, chosen for the lamina. End plates were mounted, in addition, to
suppress the three-dimensionality of vortices, at least in the vicinity of the oscillating
structure. Finally, the structural damping, e.g. the friction of bearings, was kept very
low by mounting the lamina on a torsionless fibre. These features of the test-rig are
presented in figure 2.

In detail the set-up consisted of a 1000 mm long sharp-edged lamina made from
aluminium with a cross-section of 3.0 mm× 50.1 mm, immersed upright in the centre
of a closed fluid tank with dimensions of 350 mm× 350 mm× 1100 mm. The lamina
was arranged to oscillate around its longest axis of symmetry and in its relaxed
position, i.e. 0◦, was aligned parallel to the fluid tank walls. At the top and the bottom
of the lamina 1.5 mm thick circular discs of 90 mm diameter were fixed at a distance
of about 50 mm from the endwalls of the tank. Axles, which were arranged in slide
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Figure 2. Main features of the test-rig design.

bearings made from Teflon, prohibited sideward motion of the lamina. The lamina
was driven by a torsion spring and the complete oscillating structure was suspended
from a torsionless fibre, which reduced the friction losses in the bearings significantly.
It took about 140 cycles in air, for example, until the oscillator came to rest after an
initial excursion of 45◦.

It was not possible experimentally to follow the full time history of the damped
motion of the structure from a single sequence of oscillations. Rather, from each
of a large number of oscillation sequences with the same starting deflection a single
data pair (angular position, time) was determined. Data pairs acquired over the whole
duration of the motion were then combined to yield the temporal variation of angular
position. For each test the angular (‘stop’) position of interest was prescribed relative
to the rest position (where the spring force was zero). The lamina was deflected
manually to the desired initial angle of excursion and allowed to start oscillating
under the force of the torsional spring. The elapsed time between ‘start’ and ‘stop’
signals until the lamina reached the prescribed angle was then measured.

The start and stop signals were generated by two black plastic flags of very
light construction which interrupted light beams aligned with the initial angle of
excursion and the ‘stop’ angle respectively. Trigger pulses from two photodetectors
then respectively activated and deactivated an electronic counter (Ballantine, model
5500B).

Although in principle a single flag interrupting the two light beams in turn would
have sufficed, it was found that with this arrangement the ‘stop’ beam obstructed the
‘start’ beam for certain angles, or vice versa. Splitting the detection of the start and
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Figure 3. Measured spring characteristic and corresponding higher-order polynomials.

the stop signals with separate flag/beam pairs provided the advantage of permitting
time measurements very close to the maximum positions regardless of the widths
of the flags and the barriers. When tracking the oscillatory motion beyond the first
cycle, multiple stop signals, of course, occurred. An electronic module, therefore, was
implemented to skip a preset number of stop signals.

The positioning of each light barrier was determined within ±0.1◦. For a single
swept angle at least three time measurements were performed in order to check the
repeatability (better than 8 ms, i.e. about 1% of the period, in water and less than
±2 ms in air). Between each single measurement at least 15 s relaxation time was
allowed for the fluid in the tank to become still, so ensuring the reproducibility of the
results.

For the start signal an angular offset between the start flag and the start light
barrier (set by micrometer positioning) had to be accounted for. The initial time
delay was kept less than 20 ms in all experiments. Details of the corresponding time
correction are presented at the end of this section.

The oscillating structure was driven by a compression spring mounted on the top
axle outside the fluid. This spring was modified to act purely in torsion. As the shape
of the spring varied only a little even at large amplitudes, the inertial moment of
the spring itself remained constant. This would have been difficult to achieve by a
standard flat coil. The characteristic of the spring, see figure 3, was measured by
loading it gravimetrically and fitting to a third-order polynomial by applying the
method of least squares. Due to slight differences of the spring attachment two
different regression functions

M = 2.0056× 10−2 ϕ− 8.4264× 10−4 ϕ2 − 1.2525× 10−4 ϕ3 for ϕ > 0, (2.1)

M = 2.0419× 10−2 ϕ− 1.7001× 10−3 ϕ2 − 5.1331× 10−4 ϕ3 for ϕ 6 0 (2.2)

resulted for the positive and the negative angles, where the moment M is given
in Nm and the angular position ϕ in rad. Corresponding to these equations the
spring rate c was defined by two functions of ϕ, for the positive and the negative
angles respectively. It was included in all computational models as c (ϕ) = csgn(ϕ) (ϕ)
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Figure 4. Partitioning scheme for the solution of coupled fluid–structure dynamics.

according to

M = c+(ϕ)ϕ, if ϕ > 0, (2.3)

M = c−(ϕ)ϕ, if ϕ 6 0. (2.4)

For the evaluation of the results as well as for the numerical modelling, the
structural damping was assumed to be related to the angular velocity ϕ̇. From the
experiments in air the structural damping coefficient kS was then determined to
be approximately 1.25× 10−5 rad−1 kg m2 s−1, which was very low due to the fibre
suspension. The corresponding damping ratio kS (4cΘS )−1/2 was about 0.0036. Here,
ΘS denotes the inertial moment of the complete oscillating structure, which was
calculated as ΘS = 1.4992×10−4 rad−1 kg m2. Although this ratio was significantly less
than 1, the structural damping moment was taken into account in all computations.

As previously mentioned, a constant delay angle was involved in the start time
detection. Due to the micrometer positioning this angle could be determined accu-
rately, but the corresponding time delay could not. Hence, this small time offset was
computed from the parameter model presented in § 3.4. The equation of vibration of
the structure was solved numerically taking into account the effects of the fluid flow
by using a virtual inertia and a drag term. For each series of measurements the time
offset was calculated and the measured time traces were corrected respectively.

3. Mathematical models and numerical methods
3.1. Partitioned coupling

When considering the physical domains it became obvious that the fluid flow and the
structure vibration could not be solved independently. The two domains were coupled
along their common boundaries. The structure dynamics depended on the forces and
moments induced by the flow. The fluid dynamics was coupled to the kinematic and
kinetic variables along the structure walls. In order to de-couple the physical models
and to solve them in a partitioned approach an iterative procedure was applied
which is sketched in figure 4. At each time level the conservation equations for the
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structure and the fluid domain were solved alternately. Therefore, the intermediate
boundary conditions, i.e. the integral fluid moment as well as the position and the
velocity of the lamina, were updated and exchanged between the domain models.
The convergence was checked by the identity of the boundary conditions, the balance
of the structural moments and the residuals of the flow solver, which provided an
implicit-implicit scheme. Although the partitioned algorithms themselves were stable,
this straightforward coupling proved to be unstable: full updating of the newest
boundary conditions led to a rapid excitation that prohibited balanced consistent
results. A geometric under-relaxation was, therefore, introduced to damp the outer
iteration loop. Only part of the rate of change of the lamina position, as predicted
from the structure computation, was passed to the flow computation. This treatment
was also applied to minimize the number of outer iteration loops. Typically about
one loop was necessary to decrease the normalized difference between the structure
and the fluid moments by one order of magnitude. The alternative under-relaxation
of the fluid moment gave a worse performance of the iterative process. More details
of this approach and the numerical treatment have been presented in Dütsch, Melling
& Durst (1999).

3.2. Structure domain

The structure dynamics was set up as a torsion-spring pendulum and, hence, modelled
by the well-known equation of vibration

ΘSϕ̈+ kS ϕ̇+ c(ϕ)ϕ = MF (t) (3.1)

with the angular position ϕ(t) as the single degree of freedom dependent on the time
t. This balance of moments was completed by the general coupling term MF on the
right-hand side that included all effects of the fluid domain.

Equation (3.1) was discretized by first-order-accurate implicit finite-difference
schemes. For the first time derivative the Euler implicit scheme and for the second
derivative the central difference scheme were chosen, and a constant time step was
applied. By solving this equation in combination with the flow prediction a lamina
position, which provided consistent boundary conditions for both physical domains,
was determined at each time level.

For the efficient computation of a new time step it was very important to choose
a good initial value for MF (t). Here, linear extrapolation proved to be a very good
approach, when applying the converged fluid moments MF (t−∆t) and MF (t−2∆t) of
the previous time levels. When starting the iterative process with the flow prediction
and an estimated angle, even extrapolated, the partitioned scheme performed worse.

3.3. Fluid domain

For the prediction of the coupled fluid–structure behaviour the time-dependent load
of the fluid acting on the structure had to be determined. This information was
evaluated at discrete time levels from the numerical solution of the two-dimensional
viscous flow in the cross-plane of the lamina. As the fluid motion was induced by the
oscillating lamina the computation was performed on arbitrarily moving nodes using
a Lagrangian–Eulerian formulation of the conservation equations. The corresponding
integral form for a general transported scalar variable Φ is then

d

dt

∫∫∫
V

ρΦ dV +

∫∫
S

[ρ (v − vg)Φ− ΓΦ gradΦ]n dS =

∫∫∫
V

sΦ dV , (3.2)



Torsion spring pendulum at large initial amplitudes 225
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Figure 5. (a) Computational grid at a coarse refinement level (2176 cv), shown enlarged in (b).

where ρ represents the fluid density, v the Eulerian fluid velocity vector and vg
the corresponding grid velocity vector. Furthermore ΓΦ is the diffusivity and sΦ the
volumetric source of the quantity Φ. V and S denote volume and surface respectively.
In the present computations constant fluid properties were assumed for water (ρ =
998.2 kg m−3, dynamic viscosity µ = 1.008× 10−3 Pa s) and for air (ρ = 1.209 kg m−3,
µ = 17.99× 10−6 Pa s).

The incompressible and laminar flow of a Newtonian fluid was solved on an O-type
block-structured grid that was fitted exactly to the intermediate structure boundaries,
see figure 5(a, b) for a coarse grid level. A finite-volume approach was applied for
a simple-like algorithm, which was modified to deal with an arbitrary moving grid.
The corresponding fundamentals are presented e.g. by Patankar (1980), Demirdžić &
Perić (1990) and Durst et al. (1993).

In the present work a new, conservative discretization of the time derivative for a
scalar Φ in equation (3.2) on a control volume V was applied in which the old control
volume Vo is deformed to a new control volume Vn within a time step ∆t:

d

dt

∫∫∫
V

ρΦ dV ≈ (ρΦ)n
V n − Vo

∆t
+ Vn (ρΦ)n − (ρΦ)0

∆t
. (3.3)

The governing equations were solved in an inertial Cartesian reference system and
the rotation of the lamina boundary was approximated by piecewise translational
motion of the grid cells according to the Euler implicit time scheme. For a constant
vector field in an infinite computational domain the flow can be treated as a solid
body rotation. As the volume of each cell is then constant, the discretization problem
discussed in Dütsch et al. (1999) is irrelevant with the conservative approach of
Demirdžić & Perić (1990). The local rotation of each cell is taken into account by
calculating the cell face vectors according to their orientation at each time level, so
allowing consideration of both rotational and advective effects. The precision of the
numerical result is limited by the kinematic approximation of the lamina rotation, i.e.
by the time resolution. Nevertheless, consideration of a complementary term due to
the local rotation of the coordinate system was unnecessary in this work, although it
might be crucial in other applications.

The total fluid domain boundary was treated by a Dirichlet formulation, i.e.
by providing velocity vector information. Hence, when considering the structure
connected boundaries their angular positions and velocities were necessary as the
input for the flow prediction. The computed pressure and shear force distributions
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Figure 6. Visualization of the virtual moment of inertia.

along the common boundary were then evaluated to obtain the moment reaction of
the fluid flow. Computations were performed on four different grid levels, starting
from 34 control volumes (cv) along the lamina circumference (544 cv in total) up to
272 cv (34 816 cv in total).

To visualize the flow dynamics the distribution of the vorticity Ω was computed. It
was defined as a cell-area-weighted mean value Ω according to the relationship

Ω =
1

S

∫
Ω dS =

1

S

(∮
u1 dx1 +

∮
u2 dx2

)
, (3.4)

which was solved numerically.

3.4. Empirical fluid model

As an alternative approach to the coupled numerical simulation, a parameter model
was applied in the present work. This model had its origin in an empirical theory
which is widely used in engineering applications to describe the effects of fluid mass
and fluid drag acting on a moving structure. For a translational motion path a
constant virtual mass is added to the structure mass. Additionally, a constant drag
coefficient cd is assumed to model the nonlinear damping forces of the fluid flow.
This added-mass theory is applied – to mention only one example – in the design of
oscillating cylindrical structures in cross-flow, see e.g. Morison et al. (1950) or Lin,
Bearman & Graham (1996). This theory could be applied to a rotational motion,
when introducing a virtual inertia added to the moment of inertia of the structure
alone. The right-hand side of equation (3.1) is then

MF = −ΘFϕ̈− kFϕ̇|ϕ̇|. (3.5)

The virtual inertia ΘF can be expressed more clearly by defining a virtual inertia
coefficient ci according to the relationship

ΘF = ci
1
2
πρlR4. (3.6)

Here, R denotes the half-width of the lamina and l its length, see figure 6. One could
consider 1

2
πρlR4 as the moment of inertia of a circular cylinder filled with fluid that

is swept by the full rotational motion of the lamina. The virtual inertia coefficient ci,
then, accounts for that volume fraction which has to be accelerated in addition to the
structure, see figure 6.

The damping coefficient kF can be determined from a drag coefficient formulation
such as given by

kF = cd
2
3
ρlR4. (3.7)
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The tangential velocity Rϕ̇ at the tip of the lamina was chosen to define the dynamic
pressure and 2

3
R was chosen as a characteristic length scale to obtain the fluid drag

moment.
Both terms in (3.5) were discretized consistently to the left-hand side of (3.1).

Finally, this nonlinear model was solved numerically with at least 10 000 time steps
per period.

In this parameter model pairs of coefficients, ci and cd, were determined by best fits
to the present experimental results. However, a detailed comparison with the measured
data permitted a check on the validity of the model terms, for large amplitudes in
particular.

As the right-hand side of (3.5) approximated the total fluid flow behaviour, the
solution of this model permitted the verification of the partitioned approach according
to figure 4. This treatment provided a very valuable economical tool to study in
advance the stability and convergence of the partitioned numerical method.

4. Results and discussion
4.1. Oscillatory behaviour in air

Since the dynamic processes of strong nonlinear fluid–structure coupling were of
interest, initial amplitudes ϕ0 of 10◦, 45◦ and −90◦ were chosen to investigate the
interaction mechanisms in a dense fluid by a complementary experimental and nu-
merical approach.

The pendulum configuration was characterized by a natural period of 541.1 ms at
low excursions, i.e. for almost linear behaviour. At amplitudes of about 45◦ a period
of 539.4 ms for the first cycles was evaluated from numerical solutions of (3.1) for
MF = 0. The measurements in air (45.20◦) then revealed a characteristic period of
539.6 ms close to the beginning of the motion and an average of 542.3 ms for the total
oscillation time.

The predictions of the damping behaviour in air by both the partitioned computa-
tions and the empirical model were in close agreement with the experimental results.
From the empirical model, the parameters cd = 2.8 ± 0.4 and ci = 0.31 ± 0.01 were
determined to fit the time trace within the accuracy of the measurements. For both
prediction models a time step of at most 0.1 ms had to be applied in order to prevent
significant numerical damping.

In figure 7 a time sequence of the computed vorticity field is presented. The contin-
uous curves denote positive contours of the vorticity with anticlockwise orientation
and the broken curves negative contours, i.e. clockwise orientation. Large eddies
induced by the lamina motion formed a complex arrangement of vortices and free
shear layers. The oscillations of the structure, however, were hardly influenced by
the fluid flow at all. In fact, the system behaviour was characterized more closely by
forced mixing flow than by significant fluid–structure interactions. As a result of this
weak coupling, the outer iterations of the partitioned approach needed no artificial
stabilization, e.g. by under-relaxation.

Generally, the flow pattern and fluid loading developed perfectly symmetrically
with the point of rotation in all investigated cases. In the text to follow, therefore, the
presentation of the findings concentrates on only one side of the lamina.

4.2. Oscillatory behaviour in water

When the structure was surrounded with the dense fluid water, the oscillation of the
lamina changed drastically compared with air, indicating significant coupling between
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Figure 7. Vorticity isolines for ϕ0 = 45◦ (air).

the structure and the fluid. Generally, the presence of the liquid reduced the natural
frequency and increased the damping of the structure. The period for 10◦, for example,
increased to 811.3 ms. Moreover, the vortices generated behaved as the memory of the
fluid motion, leading to extraordinary damping effects for higher initial excursions.

The time traces of the lamina oscillation are presented in figures 8, 9 and 10 for
initial angles of 10.08◦, 45.15◦ and −89.70◦. The experimental data points are marked
with error bars for both the angular position and the measured time, see also § 2.
The uncertainty in the time measurement (6 8 ms), however, was so small that the
error bars effectively disappear on the scale of these graphs. On increasing the initial
excursion the attenuation of the amplitude became more pronounced in the first few
cycles. In the case of −89.70◦ the oscillation collapsed almost totally after the first
cycle. An oscillation with amplitudes of a few degrees remained, however, and since
this was damped much less than at the beginning, it took about 16 cycles until the
lamina stopped moving.

This damping behaviour was compared with the partitioned computational results
on different grid levels and for different time steps. To obtain information as accurate
as that from the experiments a time resolution of at least 1 ms was required. For
a large initial excursion the requirements were even higher, although the period did
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Figure 9. Comparison of the computed damping behaviour for different grid levels and time steps
at 45◦ initial angle (a). Results of the parameter model (b).

not change significantly. Generally, a grid resolution of 8704 cv provided acceptable
results.

4.2.1. Empirical model

In order to apply the alternative model of virtual inertia the parameters ci and
cd had to be determined first. For an initial excursion of 10.08◦ the parameters
ci = 0.32 and cd = 1.60 were found to be optimal, because they predicted the measured
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data almost perfectly, see figure 8(b). In fact, the virtual inertia of the fluid ΘF =
1.882 × 10−4 rad−1 kg m2 became larger than that of the structure. From potential
theory ci was derived as 0.25, see Wendel (1950), which would in reality underestimate
the effect of virtual inertia. For the higher excursions, however, it was impossible to
find constant parameters that provided a sufficiently accurate damping behaviour,
see figure 9(b) and figure 10(a). They could be optimized either for the beginning of
the motion or for the following oscillations, but the the accuracy of this model never
matched the accuracy of the coupled solution.

Following suggestions from the reviewers, the possibility of reducing the discrep-
ancy between the empirical model and the experimental results by using non-constant
parameters was investigated. Elements of the empirical flow model can be traced
back to Morison’s equation (Morison et al. 1950) for the motion of an oscillating
cylinder immersed in a fluid of significant inertia. This flow configuration has been
studied by, for example, Graham (1980), Bearman et al. (1985), Obasaju, Bearman
& Graham (1988) and also recently by Dütsch et al. (1998). Morison’s equation
is in turn related to the Basset–Boussinesq–Oseen (BBO) equation for the mo-
tion of a solid sphere in a creeping flow. Since the history integral in the BBO
equation introduces a flow dependence of the coefficient associated with the ac-
celeration (ΘF or ci in equations (3.5) and (3.6)), the empirical model might be
improved by including a third parameter to represent the ‘fading memory process’.
For the present application the kernel of the history integral would have to give a
faster decay than that represented by the weighting factor (t − τ)−1/2 of the BBO
equation.

For simplicity, the use of a variable drag coefficient cd(ϕ) and a variable inertia
coefficient ci(ϕ) as functions of the instantaneous amplitude of oscillation ϕ seemed
preferable. Following experimental and analytical results for cylinders in oscillating
flow presented by Graham (1980), the appropriate expressions for a lamina were
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expected to be cd = Aϕ−1/3 and ci = B + Cϕ2/3 (A,B and C constant). This ap-
proach was rapidly abandoned, however, because it drastically altered the functional
dependence of the drag and inertial terms, so that the corresponding differential
equation became highly non-linear and difficult to solve numerically. As an alterna-
tive procedure the coefficients cd and ci were then assumed to be functions of the
starting amplitude (absolute value) for each half-cycle of oscillation of the lamina.
The coefficients were held constant during the half-period and were evaluated using
the computed damping behaviour from the CFD solution, as given in figures 8(a)
and 9(a) respectively.

Results for cd shown in figure 11 for all three initial amplitudes ϕ0 show a strong
dependence on ϕ. Remarkably, however, in all three cases the damping coefficient
for the first half-cycle is about cd = 1.0. The variation of cd(ϕ) for ϕ0 = 10◦ is fairly
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Figure 13. Comparison of the damping behaviour with the variable coefficients model
and the numerical simulation for 10◦ and 45◦.
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Figure 14. Comparison of the damping behaviour with the variable coefficients model
and the numerical simulation for −90◦.

regular and tends towards cd = 2.0 as ϕ → 0. The variations for ϕ0 = 45◦ or −90◦,
on the other hand, are highly irregular. Especially in the range ϕ < 10◦ the cd values
oscillate widely between 3.0 and 6.0 without an obvious asymptotic limit.

A model using a variable damping coefficient cd which depends on the initial
amplitude ϕ0 of each half-oscillation according to the model cd = Aϕn0 thus requires
an exponent n which is itself a function of the amplitude. From smoothed curves of
cd(ϕ) it can be deduced that n must increase in magnitude from approximately −1/3
at low amplitudes ϕ to approximately −3/4 at large ϕ. A monotonic reduction of cd
with increasing amplitude ϕ is obtained for all ϕ0 values only over a very restricted
range of ϕ. Even in the range of ϕ above the onset of oscillations a constant exponent
n = −1/3 is unsuitable.
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t = 0.09 s 0.27 s 0.45 s

0.63 s 0.81 s 0.99 s

Figure 15. Vorticity isolines for ϕ0 = 10◦ (water).

The investigated model apparently works well with forced oscillations of constant
amplitude, but not for damped oscillations for which the initial amplitude must be
considered. This is seen indeed quite readily by comparing the curves for ϕ0 = 10◦, 45◦
and −90◦ in figures 8 and 9; it is not possible to match the curves for a smaller initial
amplitude to part of the curve for a higher initial amplitude. It appears, therefore,
that even for the phases of motion with amplitude ϕ smaller than 10◦ there is no
simple dependence on the amplitude of the preceding half-cycle only. There is an
additional dependence on the initial amplitude ϕ0 which cannot be represented by
the function cd = Aϕn.

Applying the same procedure to ci led to the results in figure 12. The oscillations in
ci are less severe than those in cd and except at ϕ = 19.5◦ on the curve for ϕ0 = 45◦
and at ϕ = 27.5◦ for ϕ0 = −90◦ all values of ci lie between 0.24 and 0.34. Although
the oscillations decay, even for amplitudes as small as 5◦ there is no common limiting
value for all three cases; the limit appears to lie between 0.29 and 0.33. Because of
the small density ratio between solid and liquid, the model ci = constant is, however,
approximately confirmed, consistent with the almost constant values (0.30–0.32) found
for ci in figures 8, 9 and 10. As with cd a characteristic dependence of ci on ϕ cannot
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t = 0.09 s 0.27 s 0.45 s

0.63 s 0.81 s 0.99 s

Figure 16. Vorticity isolines for ϕ0 = 45◦ (water).

be identified. The influence of the initial amplitude is too strong, except perhaps in
the asymptotic limit ϕ → 0. The inertial effect of the fluid is adequately represented
by a constant added mass. A description of the damping effect through a classical
resistance term is, however, insufficient.

Using the coefficients cd(ϕ) and ci(ϕ) found in this way for each initial amplitude ϕ0,
the damped oscillations were recalculated with the parametric model. The curves in
figures 13 and 14 show very close agreement with the CFD simulation. This indicates
that using cd(ϕ0) and ci(ϕ0) evaluated at each extremum for the following half-cycle
is an adequate approximation. The values of cd and ci, however, vary strongly and
depend on the initial amplitude ϕ0.

4.2.2. Partitioned solution

From the partitioned solution the fluid moment acting on the lamina structure was
evaluated directly from the pressure and shear stress distributions along the common
boundary. The contribution of the shear stresses, however, was almost negligible due
to the thinness of the lamina. With respect to the acceleration of the lamina large
regions of high or low pressure could be observed either on the front or on the back
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t = 0.09 s 0.27 s 0.45 s

0.63 s 0.81 s 0.99 s

Figure 17. Vorticity isolines for ϕ0 = −90◦ (water).

side of the lamina. The isobars typically showed a butterfly-like formation in the
observed cross-section.

From the results of the partitioned computations the fluid and structure dynamics
can be described by sets of iso-vorticity lines as presented in figures 15, 16 and 17. For
all initial amplitudes the boundary layer separated at the sharp edges of the lamina.
One large vortex was created per half-cycle of the oscillation at each tip. Secondary
flow structures occurred due to the thickness of the lamina and to the combined
effects of interaction with previously shed vortices and the instability of the free shear
layers.

Naturally, the spin of a shedding eddy was in the opposite direction to the lamina
rotation. This primary effect led to the formation of a pair of counter-rotating vortices
during the first cycle of oscillation. This vortex pair moved away quickly from the
lamina tip due to its self-induced velocity field and its interaction with the lamina
disappeared. In a second step the vorticity dissipated due to the fluid viscosity.
However, for the largest amplitude the vortex pair survived right up to the tank
walls. This vortex motion could last far beyond the time at which the lamina stopped
and, hence, the time delay until repeating the experiment was very important. Recent
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Figure 18. Normalized phase diagram from computational data.

investigations by Leweke & Williamson (1998) indicated that such free initially two-
dimensional vortex pairs may become unstable. From the good agreement between
simulation and experiment, however, there is no indication that the predicted lifetime
of the large primary vortex pairs was overestimated.

For the largest initial excursion of −89.70◦ the vortex dynamics brought the
structure almost to rest after just one cycle of oscillation. At the end of the first cycle
the lamina had on both sides two strong self-induced eddies close to its front and
rear corners. The history of the fluid moment, see figure 10(b), shows that a higher
frequency fluctuation arose shortly before the first reversal of the lamina motion. This
effect was induced by the instability of the separated boundary layer that formed the
second vortex as demonstrated in figure 17. Within the following half-cycle the lamina
stopped moving after reaching an intermediate amplitude of 29◦. Large computational
resources, in particular with respect to the grid resolution, were required in order to
predict the time scales and damping of this effect correctly.

Basically, the structure domain transferred a large proportion of its energy into
the first vortices, for high initial excursion in particular. The vortices that were shed
during the following cycles were, hence, much weaker than the first ones. They kept
close to the lamina tip until they dissipated and their influence on the coupled motion
was limited. The remaining part of the damping behaviour could be compared to that
resulting from small initial excursions. It was also closer to the model assumption as
discussed in § 3.4.

In figure 18 the normalized phase diagram is presented as a plot of ϕ̇/ϕ0 versus
ϕ/ϕ0. For a linear vibration configuration with constant parameters the curves
would coincide, but, except for the very beginning of the motion at ϕ/ϕ0 = 1
the characteristics differ significantly for different initial amplitudes ϕ0. The general
damping behaviour still depended on the initial excursion, which revealed the strong
nonlinearity of the fluid loading. As this was dominated by the transient vortex
fields the coupled motion could only be considered correctly by the application of
the complete Navier–Stokes equations. The good agreement between the partitioned
approach and the experiments supported the assumption that the three-dimensionality
of the flow could be neglected for the prediction of the coupled fluid–structure
behaviour.
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5. Conclusions
The free rotational oscillation of a high-aspect-ratio lamina in a fluid initially at

rest was investigated experimentally and computationally. The damped oscillations
of the structure were measured for the initial angles of 10◦, 45◦ and −90◦. Generally,
the structure motion was strongly governed by the nonlinear interaction between
the structure and the fluid, which reduced the natural frequencies and increased the
damping. In a dense fluid, the motion within the first few cycles of oscillation was
largely governed by both the additional inertia due to the fluid and the interaction of
the structure with the self-induced vortices. For large initial excursions unexpectedly
strong damping effects occurred, which almost stopped the structure motion after the
first oscillation.

The predictions of damping of this coupled system by a partitioned numerical
analysis of the equations of motion of the structure and the fluid were in close
agreement with experimental results. Generally, the flow induced by the symmetric
structure remained symmetric for all initial excursions. Computed time sequences of
the vorticity field provided an impressive visualization of the flow dynamics, based on
pairs of counter-rotating vortices as a fundamental pattern. At increasing amplitudes
the structure-related energy was transferred more and more into the shed vortices
rather than being dissipated in the boundary layer.

An alternative theory of virtual inertia succeeded only for the range of weak
coupling, i.e. at small amplitudes or for a fluid of low density (air). Here, the
dynamics of the vortices, which could be considered as the memory of the flow, were
less relevant.

This work was sponsored by grants from the Bavarian Consortium for High
Performance Computing, FORTWIHR, and from the Volkswagen Foundation. The
authors gratefully acknowledge this support.
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